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Preliminary

Matt tosses a six-sided fair die.

1. What is the probability that the die lands on a 2 if it lands on

a prime?1

1/3

2. What is the probability that the die lands on a 1 if it does not

land on a prime? 1/3

1The prime numbers are 2,3,5.
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Preliminary

Question

What is the probability that either the die lands on 2 if it lands

on a prime, or it lands on 1 if it doesn’t land on a prime,

i.e. what is p(prime → 2 ∨ ¬prime → 1)?
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Preliminary

Answer 1

It’s 1/3.2

p(prime → 2 ∨ ¬prime → 1)

=p(prime → (1 ∨ 2) ∨ ¬prime → (1 ∨ 2))

=p(1 ∨ 2)

=
1

3
.

2This is the answer according to Égré et al., manuscript
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Preliminary

Answer 2

It’s 5/9.3

p(prime → 2 ∨ ¬prime → 1)

=1− p(prime → (3 ∨ 5) ∧ ¬prime → (4 ∨ 6))

=1− p(prime → (3 ∨ 5))p(¬prime → (4 ∨ 6))

=1− 2

3
· 2
3

=
5

9

3This is the answer according to e.g. Goldstein and Santorio, 2021; McGee,

1989; B. C. Van Fraassen, 1976.
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Preliminary

Answer 1

It’s 1.

If you learn that the die lands even:

peven(prime → 2 ∨ ¬prime → 1) ≥ peven(prime → 2) = 1

If you learn that the die lands odd:

podd(prime → 2 ∨ ¬prime → 1) ≥ podd(¬prime → 1) = 1

So you will become certain of the disjunction no matter what you

learn. By Reflection (B. C. Van Fraassen, 1995; C. Van Fraassen,

1984), you should be certain of it now.
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Preliminary

There are two urns, X and Y.4

• Urn X: 8 red balls, 2 blue balls, 0 spotted

• Urn Y: 2 red balls, 8 blue balls, all spotted

Stefan draws a ball from either of the two urns, and he flips a fair

coin to decide which urn to draw from.

4Cf. (Kaufmann, 2004, 2009; Khoo, 2016). I borrowed this version of the

example from Mandelkern (manuscript).
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Preliminary

Question

What is the probability that if the ball drawn by Stefan is red,

then it is spotted?
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Preliminary

Answer 1

It’s 1/2.

p(R → S) = p(X ) =
1

2
.

Answer 2

It’s 4/5.

p(R → S) = p(S |R) = 8

10
= 0.8
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Preliminary

Main Question

For these questions, is there one single correct answer, or are

some/all the answers proposed admissible?

How do we decide?
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Preliminary

Probabilities are hard and our intuitions are notoriously unreliable.

• Base-rate fallacy

• Conjunction fallacy

• Gambler’s fallacy

• Monty Hall problem

• Simpson’s paradox
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Preliminary

Proposal

1. A probability judgment is irrational if it is Dutch-bookable,

i.e. licenses accepting a set of bets that are individually fair

but jointly guarantee a sure loss.

2. There are different notions of Dutch books (fair bets), which

vindicate different (and possibly incompatible) probability

judgments about conditionals.
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Formal setup



Formal setup

Let At be a set of propositional atoms and LC a conditional

language generated by the grammar

LC := α | ¬p | p ∧ p | p ∨ p | p → p

Let

• LB : the Boolean fragment of L (no conditionals)

• LS : the fragment that only contains simple conditionals;

• LR : the fragment that contains no left-nested conditionals.5

5All fragments are closed under ¬,∨ and ∧
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Formal setup

Let L ∈ {LB ,LS ,LR ,LC}.

A credence function over L is a function c : L → [0, 1].6

What does it mean for c to be Dutch-bookable?

6I take the objects of credences to be sentences rather than propositions in

order to stay neutral on the logic of conditionals and whether they express

propositions.
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Formal setup

Suppose c : LB → [0, 1] and c(A ∨ ¬A) = 1 but

c(A) = c(¬A) = 0.

• Bet 1: buy a $1 bet on A ∨ ¬A at $1.

• Bet 2: sell a $1 bet on A at $0.

• Bet 3: sell a $1 bet on ¬A at $0.7

A ¬A
Bet 1 0 0

Bet 2 −1 0

Bet 3 0 −1

Net −1 −1

7Throughout I assume that the agent values money linearly.
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Formal setup

A ¬A
Bet 1 0 0

Bet 2 −1 0

Bet 3 0 −1

Net −1 −1

This payoff table assumes that the bets are settled “classically”:

• the agent either wins or loses her bets on A and ¬A (e.g. it

never gets called off);

• the agent loses her bet on A iff she wins her bet on ¬A
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Formal setup

Suppose the bets are settled, not based on truths, but based on

informational states. The buyer wins a bet on A at i iff i entails

that A is true.

A ¬A ⊤
Bet 1 0 0 0

Bet 2 −1 0 0

Bet 3 0 −1 0

Net −1 −1 0

The agent doesn’t suffer “sure” loss (i.e. loss at all informational

states).
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Formal setup

We represent a way of settling bets on L by a settlement

function s : L → [0, 1].

s(p) = x : the seller pays the buyer $x for a unit bet on p

according to s.

Definition

c is Dutch-bookable relative to S if there are

α1, . . . , αn ∈ R, p1, . . . , pn ∈ L such that

n∑
i=1

αi (c(pi )− s(pi )) < 0,∀s ∈ S
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Formal setup

Example

Let L = LB . We say s : LB → [0, 1] is Tarskian if s(p) ∈ {0, 1}
and

• s(¬p) = 1 iff s(p) = 0;

• s(p ∧ q) = 1 iff s(p) = 1 and s(q) = 1;

• s(p ∨ q) = 1 iff s(p) = 1 or s(q) = 1

19



Formal setup

Fact (De Finetti, 2017 (1972))

Let S be the set of Tarskian settlement functions on LB . Then c

is not Dutch-bookable relative to S iff c is a classical finitely

additive probability function.
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Formal setup

Example

Let L = LB . Say p ⊨ q if s(q) = 1 whenever s(p) = 1 for any

Tarskian settlement function on LB . The set of DS-settlement

functions is the set S = {sp : p ∈ LB , ̸⊨ ¬p} where

sp(q) =

1 if p ⊨ q

0 otherwise
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Formal setup

Fact (Jaffray, 1989)

Let S be the set of Tarskian settlement functions on LB . Then c

is not Dutch-bookable relative to S iff c is a classical

Dempster-Shafer belief function.

To me, this result suggests that Dempster-Shafer belief functions

are not competitors to Bayesian probabilities; they model different

kinds of objects (cf. Paris, 2001).

Goal: Generalize these results to languages involving conditionals.

22
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Main result and applications



Main result

Theorem

Fix L. Let S be a finite8 set of settlement functions for L. c is

not Dutch-bookable relative to S iff there exists a probability

function π over S such that for all p ∈ L,

c(p) =
∑
s∈S

π(s)s(p)

Proof sketch. Hyperplane separation theorem.

8I assume finiteness to sidestep issues involving probabilities over infinite sets,

e.g. measurability.
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Main result

This representation result allows us to connect properties of

settlement functions with properties of credences invulnerable to

Dutch-books

Corollaries

Suppose c is not Dutch-bookable relative to S. If

• for every s ∈ S, s satisfies property Φ,

• then c satisfies property Ψ.9

9For some results we also have the converse, which is often the more

interesting direction, but I’ll focus on this direction first because it’s often

easier to state.
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Application I: Stalnaker’s Thesis

Let L = LS . Fix c : L → [0, 1]. Let S be a set of settlement

functions on L that are Tarskian when restricted to LB . Suppose c

is not Dutch-bookable relative to S.
Fact

If for all s ∈ S,

s(A → B) =

s(B) if s(A) = 1

c(A → B) if s(A) = 0.

Then c(A)c(A → B) = c(A ∧ B).

25



Application I: Stalnaker’s Thesis

Proof.

c(A → B) =
∑
s

π(s)s(A → B)

=
∑

s:s(A)=1,s(B)=1

π(s) +
∑

s:s(A)=0

π(s)c(A → B)

= c(A ∧ B) + c(¬A)c(A → B)

So

c(A)c(A → B) = c(A ∧ B)

26
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Application II: Local Conditioning

Let X = {X1, . . . ,Xn} ⊆ LB be a partition relative to S, i.e. for all
s ∈ S, s(

∨
i Xi ) = 1 and s(Xi ∧ Xj) = 0 for all i ̸= j .

Fact

If for all s ∈ S and all i , if s(Xi ) = 1, then

s(A → B) = s(AXi → B) =

s(B) if s(A) = 1

c(AXi → B) otherwise

Then c(A → B) =
∑

i c(B|AXi )c(Xi ).

27



Application II: Local Conditioning

Compare:

• Stalnaker’s Thesis (Global Conditioning): if s(Xi ) = 1 and

s(A) = 0, then s(A → B) = c(A → B);

• Local Conditioning: if s(Xi ) = 1 and s(A) = 0, then

s(A → B) = c(AXi → B)

28



Application II: Local Conditioning

There are two urns, X and Y.

• Urn X: 8 red balls, 2 blue balls, 0 spotted

• Urn Y: 2 red balls, 8 blue balls, all spotted

Presumably, c(XR → S) = 1 and c(YR → S) = 0.

XR XB YR YB

Conforming 0 4
5 1 4

5

Non-conforming 0 0 1 1

29



Application II: Local Conditioning

There are two urns, X and Y.

• Urn X: 8 red balls, 2 blue balls, 0 spotted

• Urn Y: 2 red balls, 8 blue balls, all spotted

Presumably, c(XR → S) = 1 and c(YR → S) = 0.

XR XB YR YB

Conforming 0 4
5 1 4

5

Non-conforming 0 0 1 1

29



Application II: Local Conditioning

There are two urns, X and Y.

• Urn X: 8 red balls, 2 blue balls, 0 spotted

• Urn Y: 2 red balls, 8 blue balls, all spotted

Presumably, c(XR → S) = 1 and c(YR → S) = 0.

XR XB YR YB

Conforming 0 4
5 1 4

5

Non-conforming 0 0 1 1

29



Application II: Local Conditioning

As Mandelkern (manuscript) points out, we can get

non-conforming judgments even when there are no salient

partitions.

Suppose Stephen tosses a fair coin. If the coin lands heads, he will

draw a ball at random from one of the two urns. If the coin lands

tails, he’ll go have lunch.

Intuitively, p(R → S) = 1
2 , but, assuming there is s ∈ S such that

s(T ) = 1, {X ,Y } no longer forms a partition relative to S.

30
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Application II: Local Conditioning

Let X = {X0,X1, . . . ,Xn} ⊆ LB be a partition relative to S.
Suppose for all s ∈ S and all i ,

• if s(X0) = 1, then s(A → B) =

s(B) if s(A) = 1

c(A → B) otherwise

• for i ≥ 1, if s(Xi ) = 1, then

s(A → B) = s(AXi → B) =

s(B) if s(A) = 1

c(AXi → B) otherwise

Let X =
∨

i≥1 Xi .

31



Application II: Local Conditioning

Then

c(A → B) =
c(ABX0) +

∑
i≥1 c(B|AXi )c(Xi ))

c(X ∨ A)

In particular, if A ⊨ X , then

c(A → B) =
∑
i≥1

c(B|AXi )c(Xi |X ).
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Application II: Local Conditioning

XR XB YR YB T

Conforming 0 4
5 1 4

5
4
5

Non-conforming 0 0 1 1 1
2
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Application III: Trivalent Probability

Fix c : L → [0, 1]. W ⊆ {w : L → {0, 1/2, 1}. For each w , define

sw : L → [0, 1] as

sw (p) =

w(p) if w(p) ̸= 1/2

c(p) otherwise.

Let pT = {w ∈ W : w(p) = 1} and pF = {w ∈ W : w(p) = 0}.

Fact

c is not Dutch-bookable relative to S = {sw : w ∈ W } iff there is

a probability function π ∈ ∆(W ) such that

c(p) =
π(pT )

π(pT ) + π(pF )

34
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Application IV: Sequence Probabilities

One of the defining properties of probabilities in Bernoulli models

is that they satisfy Independence: if H,A are incompatible, then

c(H ∧ A → B) = c(H)c(A → B).

Fact

Suppose for all s ∈ S,

• Additivity. s(p) = s(A ∧ p) + s(¬A ∧ p).

• Conjunction. s(p ∧ q) = 0 if s(p) = 0 or s(q) = 0.

• Weak Cancellation. If s(A) = 0, then s(A → B) = c(A → B).

Then c satisfies Independence.
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Application IV: Sequence Probabilities

In general, settlement functions defined in terms of trivalent

semantics satisfy Conjunction and Weak Cancellation, but violate

Additivity.

E.g. In the theory of Egre et al., if s(H) = 1 and H,A are

incompatible, then

• s(A → B) = c(A → B);

• s(H ∧ A → B) = 1.
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Application V: Back to the die

Question

What is the probability that either the die lands on 2 if it lands

on a prime, or it lands on 1 if it doesn’t land on a prime?

1 2 3 4 5 6
1
3 1 1 0 0 0 0
5
9 1 1 1

3
1
3

1
3

1
3

1 1 1 1 1 1 1
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Conclusion

Proposal

1. A probability judgment is irrational if it is Dutch-bookable,

i.e. licenses accepting a set of bets that are individually fair

but jointly guarantee a sure loss.

2. There are different notions of Dutch books (fair bets), which

vindicate different (and possibly incompatible) probability

judgments about conditionals.
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Conclusion

• Representation theorem for Stalnaker’s Thesis, Local

Conditioning, Trivalent Probabilities and Independence in

terms of properties of settlement functions

• Generalization of the set-up to diachronic Dutch-books (the

Update Thesis vs. Conditionalization; cf. Fusco (2023) and

McNamara and Zhang (manuscript))
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Conclusion

Open problems

• Other probabilistic principles; left-nested conditionals

• Analogue results in terms of accuracy

• Unconditionals, the Reflection Principle and the logic of

dominance reasoning

• What are people’s intuitions about settlement conditions for

compounds of conditionals/nested conditionals? Cf. (Politzer

et al., 2010)

Whether or not I am right about anything, there is much more

work to be done!
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