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1 Indicatives and Subjunctives
Lewis (1981b) begins:

Some think that in (a suitable version of) Newcomb’s problem, it
is rational to take only one box…They are convinced by indicative
conditionals: if I take one box I will be a millionaire, but if I take
both boxes I will not…

Others, and I for one, think it rational to take both boxes…We are
convinced by counterfactual conditionals: If I took only one box,
I would be poorer by a thousand than I will be after taking both.

2 Some Formalism
• Expected Utility. Lewis claimed that …

EEU(A) =
∑
S

Pr(S | A)V al(AS) (1)

CEU(A) =
∑
S

Pr(A >s S)V al(AS) (2)

• Stalnaker’sThesis.

Pr(A >i S) = Pr(S | A) (3)

• Skyrms’sThesis.¹

Pr(A >s S) = EPr(Ch(S | A)) (4)

• Principal Principle (PP). Suppose you expect to receive no inadmissible in-
formation and that your occurrent justified prior is Pr. Then:

Pr(S | (Ch = π)) = π(S) (PP)

¹Skyrms (1981) and Skyrms (1984, Ch. 5).

Pr(S) = EPr(Ch(S)) (5)

=
∑
π

Pr(Ch = π)π(S) (6)

• Combination of PP with (3) and (4).

CEU(A) =
∑
S

EPr(Ch(S | A))V al(AS) (7)

=
∑
S

EPr

(
Ch(AS)

Ch(A)

)
V al(AS) (8)

…The expectation of a ratio

EEU(A) =
∑
S

(
Pr(AS)

Pr(A)

)
V al(AS) (9)

=
∑
S

(
EPr(Ch(AS))

EPr(Ch(A))

)
V al(AS) (10)

…A ratio of expectations

• BayesianLore. Youare rationally required toupdateby conditionalization—
viz., by the ratio of expectations.

3 Examples
• (shoe bets.)
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Bet 1 Bet 2 posterior payoffs if p
probability if p

p $1 −$10 0 −$0.65
p $0 $0 1 $6

premium −$0.65 $6 Expectation: $(6.00− .65)
= $5.35

Table: for (shoe bets).

• De Finetti payoffs: you will pay premium of $Pr(B | A) for a bet which

– pays $1 if (A ∧B);

– pays $0 if (A ∧B)

– is called-off (premium refund) if ¬A.

k = [Pr(AB)× 1 + Pr(AB̄)× 0] + [Pr(Ā)× k] (DF)

• (biasedcoins.) You know two coins,A andB, come from the same heav-
ily biased coin factory. Their bias is either .9 towards heads or .9 away from
heads: Ch(AH) = Ch(BH) ∈ {.1, .9}. Their flips, of course, are inde-
pendent: Ch(AH | BH) =Ch(AH) and vice-versa.

You’re indifferent as towhichway the coins arebiased: .5=Pr(Ch(AH) =
.9) = Pr(Ch(BH) = .9). It follows that: (i) Pr(BH | AH) = .82; (ii)
EPr(Ch(BH | AH)) = .5. So by Stalnaker’s Thesis, Pr(AH >i BH) =
.82; by Skyrms’s Thesis, Pr(AH >s BH) = .5.²

CoinA is in your hand. CoinB is about to flipped by nature.

I purchase from Penurious Paul, for $0.65, a DeFinetti bet on (AH > BH) at 65-
35 odds for a stake of $1…But then Wealthy William comes along and is willing
to buy,fromme, a DeFinetti bet on (AH > BH) at 60-40 odds for a stake of $100.
Combined: (i) $-39.65 if (AHBH); (ii) $59.35 if (AHBT ); (iii) $0 otherwise.

²The Skyrms’s Thesis quantity, .5, is obvious. For Stalnaker: Pr(AH >i BH) = Pr(BH |
AH) = Pr(AHBH )

Pr(AH )
=

∑
π Pr(Ch=π)π(AHBH )∑

π Pr(Ch=π)π(AH )
= .5(.9)2+.5(.1)2

.5(.9)+.5(.1)
= .92+.12

.9+.1
= .81+.01

1
=

.82.

Bet 1 Bet 2 Posterior payoffs
if place heads if place heads

AHBH $1 −$100 .5 1− 100− 0.65 + 60 = −39.65
AHBT $0 $0 .5 0 + 0− .65 + 60 = 59.35
AT $0.65 −$60 0

premium −$0.65 $60 Expectation: $9.85

Table: for (biased coins).

test
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π1(AH) = π1(BH) = .9; π2(AH) = π2(BH) = .1;
π1(AH | BH) = π1(AH); π2(AH | BH) = π2(AH);
π1(BH | AH) = π1(BH) π2(BH | AH) = π2(BH)

Place ChAH
(AH ∧BH) = .9 $1 ChAH

(AH ∧BH) = .1 $1
AH ChAH (AH ∧BT ) = .1 $0 ChAH (AH ∧BT ) = .9 $0

ChAH
(AT ) = 0 $k ChAH

(AT ) = 0 $k = .5
Flip Ch⊤(AH ∧BH) = .81 $1 Ch⊤(AH ∧BH) = .01 $1

Ch⊤(AH ∧BT ) = .09 $0 Ch⊤(AH ∧BT ) = .09 $0
Ch⊤(AT ) = .1 $k Ch⊤(AT ) = .9 $k = .82

Place ChAT
(AH ∧BH) = 0 $1 ChAT

(AH ∧BH) = 0 $1
AT ChAT (AH ∧BT ) = 0 $0 ChAT (AH ∧BT ) = 0 $0

ChAT
(AT ) = 1 $k ChAT

(AT ) = 1 $k = un-
defined

Figure 3: The (AH > BH)Matrix.

A valuated chance space forL is a tuple ⟨W,π, V ⟩, where (i) ⟨W,π⟩
is a chance space and (ii) V : prop → ℘(W ) is a valuation function
such that for every w ∈ W , there is some sentence ϕw such that
V (ϕw) = {w}. The truth-conditions for ϕ ∈ L are relativized to
w ∈W and π-pairs (extending Kocurek, 2022):

• π,w ⊩ p iffw ∈ V (p)

• π,w ⊩ ¬ϕ iff π,w ⊮ ϕ

• π,w ⊩ (ϕ ∧ ψ) iff π,w ⊩ ϕ and π,w ⊩ ψ

• π,w ⊩ (Ch = π′) iff π = π′

• π,w ⊩ (Ch(ϕ) = n) iff π( [[ϕ]]π) = n, where
[[ϕ]]π := {w′ ∈W | π,w′ ⊩ ϕ}

A Principal Principle (PP)-Compliant Probability Model onW is
a tupleM = ⟨Pr,Π,W, V ⟩, where

1. Π is a set of chance hypothesesπ1, π2 . . . πn such that for each
πi, ⟨W,πi, V ⟩ is a valuated chance space overW .

2. Pr is a probability distribution over π ∈ Π. When Pr(π) =
n for some π ∈ Π and n ∈ [0, 1], we say equivalently that
Pr(Ch = π) = n.

3. For all ϕ ∈ L:
Pr(ϕ | Ch = π) = π( [[ϕ]]π), which entails

Pr(ϕ) =
∑
π

Pr(Ch = π)π( [[ϕ]]π)

A decision problem D = ⟨M,A,S, V al⟩ pairs a PP-Compliant
Probability ModelM with

1. an orthogonal partitioning ofW into actsA and statesS. Out-
comesO are members ofA× S.

2. a utility function V al: O 7→ R∪ {R}.a ∀w′, w′′ ∈ O, we say
that V al(w′) = V al(w) = V al(O).

3. a set of moves M such that (i) A ⊂ M ; (ii) ⊤ ∈ M . For
now we will consider the case whereM = A ∪ {⊤} .

aThis allows De Finetti-style conditional bets to take the value {R} in the
premium-refund condition.

EU(M) =
∑
π

∑
O∈A×S

Pr(Ch = π)πM (O)V al(O) (12)

in sequence semantics, we can lift this to:

EU(M) =
∑
π

∑
O∈{A: A∩M ̸=∅}×S

Pr(Ch = π)π(M > O)V al(O) (13)

3



Decision and Tenable Conditionals
World Sequence Day

Melissa Fusco
mf3095@columbia.edu

Theorem 1. IfM = A ∈ A,EU(M) = CEU(A).

Theorem 2. IfM = ⊤, thenEU(M) = EEU(M).
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